

Abstracts

Higher Order Asymptotic Boundary Condition for the Finite Element Modeling of Two-Dimensional Transmission Line Structures

A. Khebir, A.B. Kouki and R. Mittra. "Higher Order Asymptotic Boundary Condition for the Finite Element Modeling of Two-Dimensional Transmission Line Structures." 1990 Transactions on Microwave Theory and Techniques 38.10 (Oct. 1990 [T-MTT]): 1433-1438.

In this work the general form of the solution to Laplace's equation is used to derive a higher order asymptotic boundary condition. The boundary condition is then implemented in the finite element scheme to model two-dimensional transmission line structures operating in the quasi-TEM mode. The numerical results of two- and six-conductor configurations show that the higher order asymptotic boundary condition not only yields more accurate results than those obtainable with a perfectly conducting shield but also compares more favorably with the published work than the simple asymptotic condition.

[Return to main document.](#)